Human Activity Recognition Based on the Hierarchical Feature Selection and Classification Framework

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression-Based Feature Selection on Large Scale Human Activity Recognition

In this paper, we present an approach for regression-based feature selection in human activity recognition. Due to high dimensional features in human activity recognition, the model may have over-fitting and can’t learn parameters well. Moreover, the features are redundant or irrelevant. The goal is to select important discriminating features to recognize the human activities in videos. R-Squar...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

A feature selection-based framework for human activity recognition using wearable multimodal sensors

Human activity recognition is important for many applications. This paper describes a human activity recognition framework based on feature selection techniques. The objective is to identify the most important features to recognize human activities. We first design a set of new features (called physical features) based on the physical parameters of human motion to augment the commonly used stat...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

the emotion recognition system based on autoregressive model and sequential forward feature selection of electroencephalogram signals

electroencephalogram (eeg) is one of the useful biological signals to distinguish different brain diseases and mental states. in recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from eeg signals. in this research, we introduce an emot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Electrical and Computer Engineering

سال: 2015

ISSN: 2090-0147,2090-0155

DOI: 10.1155/2015/140820